Rapid fabrication of microfluidic devices in poly(dimethylsiloxane) by photocopying.
نویسندگان
چکیده
A very simple and fast method for the fabrication of poly(dimethylsiloxane) (PDMS) microfluidic devices is introduced. By using a photocopying machine to make a master on transparency instead of using lithographic equipment and photoresist, the fabrication process is greatly simplified and speeded up, requiring less than 1.5 h from design to device. Through SEM characterization, any micro-channel network with a width greater than 50 microm and a depth in the range of 8-14 microm can be made by this method. After sealing to a Pyrex glass plate with micromachined platinum electrodes, a microfluidic device was made and the device was tested in FIA mode with on-chip conductometric detection without using either high voltage or other pumping methods.
منابع مشابه
Poly(dimethylsiloxane) as a material for fabricating microfluidic devices.
This Account summarizes techniques for fabrication and applications in biomedicine of microfluidic devices fabricated in poly(dimethylsiloxane) (PDMS). The methods and applications described focus on the exploitation of the physical and chemical properties of PDMS in the fabrication or actuation of the devices. Fabrication of channels in PDMS is simple, and it can be used to incorporate other m...
متن کاملFabrication of microfluidic systems in poly(dimethylsiloxane).
Microfluidic devices are finding increasing application as analytical systems, biomedical devices, tools for chemistry and biochemistry, and systems for fundamental research. Conventional methods of fabricating microfluidic devices have centered on etching in glass and silicon. Fabrication of microfluidic devices in poly(dimethylsiloxane) (PDMS) by soft lithography provides faster, less expensi...
متن کاملRapid bench-top fabrication of poly(dimethylsiloxane)/polystyrene microfluidic devices incorporating high-surface-area sensing electrodes.
The development of widely applicable point-of-care sensing and diagnostic devices can benefit from simple and inexpensive fabrication techniques that expedite the design, testing, and implementation of lab-on-a-chip devices. In particular, electrodes integrated within microfluidic devices enable the use of electrochemical techniques for the label-free detection of relevant analytes. This work p...
متن کاملRapid prototyping of microfluidic devices with a wax printer.
We demonstrate a rapid and inexpensive approach for the fabrication of high resolution poly(dimethylsiloxane) (PDMS)-based microfluidic devices. The complete process of fabrication could be performed in several hours (or less) without any specialized equipment other than a consumer-grade wax printer. The channels produced by this method are of high enough quality that we are able to demonstrate...
متن کاملMicromolding of solvent resistant microfluidic devices.
We demonstrate a rapid fabrication procedure for solvent-resistant microfluidic devices based on the perfluoropolyether (PFPE) SIFEL. We carefully modified the poly-dimethylsiloxane (PDMS) micromolding procedure, such that it can still be executed using the standard facilities for PDMS devices. Most importantly, devices with a thin SIFEL layer for the patterned channels and a PDMS support layer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 1 1 شماره
صفحات -
تاریخ انتشار 2001